If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2+4t-7=0
a = 5; b = 4; c = -7;
Δ = b2-4ac
Δ = 42-4·5·(-7)
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{39}}{2*5}=\frac{-4-2\sqrt{39}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{39}}{2*5}=\frac{-4+2\sqrt{39}}{10} $
| 5x+5-1.5x=8 | | 73=3(5k+4)+1 | | -4x^2=6x^2-9 | | (1/3x)+4=-2 | | 3x+6-2x=-2 | | X2+(x+2)=340 | | –5(3x–8)=–45 | | 3(k-11)=15 | | 3d-5+4d+5=180 | | -13=j/3-15 | | 5(k+14)=1/2(20k-80) | | 8k-6k=(k+3)+6k | | 6-54n=-54n+10 | | 18/x-11=9(-2+1/x)+8 | | 52=7(h-2)+17 | | R=5x+13=58 | | 6x+4.6=7x | | x=22/13+4*x/3.14159265 | | -12=-3(y+20) | | 6x11=2x+7 | | -3/4(4x-8)-3x=0 | | 6(2x+5)-3=9 | | 7-3x-2=32 | | -(3)/(4)(4x-8)-3x=0 | | 1-12=-3(y+20) | | (x/7)-(7/6)=(6x+49/7) | | 5x+2.1=-47.9 | | (k-3)9=81 | | −5(4x−4)−2x−4=-28 | | -3(-9x-4)=2(x-2) | | 4w+6-1w=5w-2w+6 | | 5c-7=1/2(8c-14)+c |